### Southeast Regional Carbon Sequestration Partnership









#### Presented to:

Regional Carbon Sequestration Partnerships Annual Review Meeting Development Phase Field Tests

> Pittsburgh, PA October 5, 2010

#### Presented by:

Gerald R. Hill, Ph.D.
Senior Technical Advisor
Southern States Energy Board

#### Acknowledgements







- This material is based upon work supported by the U.S. Department of Energy National Energy Technology Laboratory.
- Cost share and research support provided by SECARB/SSEB Carbon Management Partners



Through innovations in energy and environmental policies, programs and technologies, the Southern States Energy Board enhances economic development and the quality of life in the South.

- SSEB Mission Statement



#### **SECARB Participants: Diverse and Numerous** (100+)

Advanced Resources International Alabama Power Company Alpha Natural Resources American Coalition for Clean Coal Electricity

American Electric Power Amvest Gas Resources, Inc.

**AMVEST Oil and Gas** 

**ARCADIS US** 

**Arch Coal** 

Augusta Systems, Inc.

Baker Hughes, Inc.

**Blue Source** 

**Bright Energy, LLC** 

BP America, Inc.

**BP Alternative Energy** 

**CDX Gas, LLC** 

ClemsonUniversity

**CNX Gas** 

CONSOL, Inc.

**CSX Transportation** 

**Dart Oil & Gas Corporation** 

Dart Energy Corporation

Denbury Resources, Inc.

DNV

**Dominion Energy** 

**Dominion Resources** 

**Duke Energy** 

**Dupont Titanium Technologies** 

**Eastern Coal Council** 

**Electric Power Research Institute (EPRI)** 

**Entergy Services** 

**Equitable Production Company** 

**Exxon Mobil Production Company** 

F.D. Robertson

Florida Municipal Electric Association

Florida Power & Light Company

**Geological Survey of Alabama** 

GeoMet

Halliburton

**Hilcorp Energy Company** 

Kentucky Energy & Environment-Division of

**Energy Development & Independence** 

Kentucky Geological Survey

Interstate Oil and Gas

**Compact Commission** 

Marshall Miller & Associates

Massachusetts Institute of Technology

McJunkin Appalachian Oilfield Company

Mississippi Power Company

Mississippi State University (MSU)

**Natural Resources Partners** 

**NRG Energy** 

**Old Dominion Electric Cooperative** 

Penn Virginia Operating Company, LLC

**Penn Virginia Resources** 

**Petron Resources** 

**Piney Land Company** 

**Pocahontas Land Corporation** 

Praxair

**Progress Energy** 

RMB Earth Science Consultants, Ltd.

**Santee Cooper Power** 

SCANA Energy

Schlumberger

**Shell Exploration & Production Company** 

S&ME, Inc/ EMS Services

**Smith Energy** 

**South Carolina Electric & Gas Company** 

**Southern Company** 

**Southern Company Services** 

Southern Natural Gas & El Paso

**Exploration and Production** 

Southern States Energy Board

**Teco Coal Corporation** 

**Tennessee Valley Authority** 

**Texas Bureau of Economic Geology** 

-Gulf Coast Carbon Center

U.S. Department of Energy/National

**Energy Technology Laboratory** 

Virginia Tech

**VA Center for Coal and Energy Research** 

**West Virginia University** 

#### **SECARB Phase II**



**Coal Seam Project** Host Company: El Paso E&P near Tuscaloosa, Alabama

> **Mississippi Test Site** Mississippi Power's Plant Daniel Escatawpa, Mississippi





near Natchez, Mississippi







**SECARB Phase III** 

SECARB Early Test was recognized by DOE for furthering CCS technology and meeting G-8 goals for deployment of 20 similar projects by 2020. The Early Test is the fifth project worldwide to reach the CO<sub>2</sub> injection volume of one million tonnes and the first in the U.S.

- (DOE Techline, 11/05/2009)



Denbury Resources' Cranfield Field Near Natchez, Mississippi





#### **Anthropogenic Test**

Capture: Alabama Power Plant Barry, Bucks, Alabama

Transportation: Denbury Resources

Geo Storage: Denbury's Citronelle Field, Citronelle, Alabama

### SECARB Early Large Volume Injection Tests

Cranfield Unit operated by Denbury Resources Inc

Depth >10,300 ft

Injection Zone – lower Tuscaloosa Formation Injection rate>1 Million tonnes per year





#### **Cranfield Geometric Overview**



#### **Cranfield Early Test Monitoring: Detailed Area of Study**





Reservoir heterogeneity from

surface seismic

- Stratal slicing for facies
- 90-degree phase
- AVF for thickness/fluid

**Point** 

bar

Channel

**Point bar** 

AVO for fluid/OWC

Chan



### Crosswell ERT (Electric Resistance Tomography)



### Nulled Background at Initiation Of Injection (1 Dec 2009)





# Injector Workover Fluids? (4 Dec 2009)



## Arrival of CO<sub>2</sub> Plume? (9 Dec 2009)



## Growth Of CO<sub>2</sub> Plume? (21 Dec 2009)



# Growth Of CO<sub>2</sub> Plume? (11 Jan 2010)



# Growth Of CO<sub>2</sub> Plume? (13 Jan 2010)



# Growth Of CO<sub>2</sub> Plume? (5 Feb 2010)



# Growth Of CO<sub>2</sub> Plume? (23 Feb 2010)



#### Cross Well ERT – clues to how flow occurred



# Cross Well ERT tells us how flow occurred



Resistive plume = CO2 in reservoir Conductive plume= workover fluids?



#### Phase III Anthropogenic Test Integrating Capture, Transportation and Storage of CO<sub>2</sub>

- CO<sub>2</sub> Capture Unit at Alabama Power's Plant Barry
- 12-mile CO<sub>2</sub> pipeline constructed by Denbury Resources
- CO<sub>2</sub> Injection at Denbury's Citronelle Field 2011-2013
- SECARB researchers will monitor injection and 3-years post injection



#### Geologic Overview for Plant Barry and Citronelle Field

Proposed sequestration site is on the southeast flank of the Citronelle Dome





- No evidence of faulting or fracturing
- Multiple confining units between potential injection targets and base of USDW
- However, historic oil and gas wells and a lack of local characterization of saline reservoirs presents challenges





#### **Expected Reservoir Intersection Depths at Citronelle**

| Formation Tops                          | Anticipated Depth<br>Feet | Interval<br>Thickness<br>Feet |
|-----------------------------------------|---------------------------|-------------------------------|
| Bottom of Fresh Water (<1,000 mg/l)     | ~ 1,000                   | 1,000                         |
| Bottom of Potable Water (<10,000 mg/l)  | Max ~ 2,000               | 1,000                         |
| Selma Chalk Group                       | 4,550                     | 1,150                         |
| Eutaw Group                             | 5,700                     | 300                           |
| Upper Tuscaloosa Formation              | 6,000                     | 700                           |
| Marine Tuscaloosa Formation             | 6,700                     | 250                           |
| Lower Tuscaloosa Formation              | 6,950                     | 300                           |
| Washita-Fredericksburg Undifferentiated | 7,250                     | 2,150                         |
| Paluxy Formation                        | 9,400                     | 1,100                         |
| Mooringsport Formation                  | 10,500                    | 250                           |
| Ferry Lake Anhydrite                    | 10,750                    | 200                           |
| Rodessa Formation (oil reservoir)       | 10,950                    | -                             |

### **CO<sub>2</sub> Injection Monitoring Plan**





#### Model 3-D View of Citronelle Injection Site



- 17 sand bodies from geological model
- Average permeability of 88 mD
- Average porosity of 19.3%
- Identical permeability and porosity in all layers

### Capture Unit at Alabama Power's Plant Barry

#### MHI advanced amine capture unit

\*ENERGY BOARD

- 25 MW post combustion slip stream
- Fabricate off-site and barge to Plant Barry
- Compress CO<sub>2</sub> to 2000 psi
- Scheduled start up during summer, 2011
- Separately funded



#### Simplified CO<sub>2</sub> Scrubbing Process (Amine)



### **Groundbreaking Ceremony: Capture Unit**

Alabama Power's Plant Barry, April 14, 2010, Bucks, Alabama









### **Site Progress Photos (7-28-10)**





### **Modular Transportation Photos (9-23-10)**



### **Integration Questions**







- What business relationships must be established among the CO<sub>2</sub> provider, transporter and injection field operator?
- How can a CO<sub>2</sub> transportation and injection system impact plant operations and scheduling?
- How can cycling a plant on-line and off-line impact CO<sub>2</sub> transportation and injection?
- What types of communications and control systems are needed to support integration?
- How can lessons learned assist in scale up?





### Gerald R. Hill, Ph.D. Senior Technical Advisor <a href="mailto:hill@sseb.org">hill@sseb.org</a>





#### **Southern States Energy Board**

6325 Amherst Court Norcross, Georgia 30092 USA

Phone: (770) 242-7712

Fax: (770) 242-0421

www.sseb.org www.secarbon.org